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ABSTRACT OF THE THESIS

Segmentation of Unstructured Datasets

by Smitha Bhat

Thesis Director: Professor D. Silver

Datasets generated by computer simulations and experiments in Computational Fluid

Dynamics tend to be extremely large and complex. It is difficult to visualize these

datasets using standard techniques like Volume Rendering and Ray Casting.

Object Segmentation provides a technique to extract and quantify regions of interest

within these massive datasets. This thesis explores basic algorithms to extract coherent

amorphous regions from two-dimensional and three-dimensional scalar unstructured

grids. The techniques are applied to datasets from Computational Fluid Dynamics and

from Finite Element Analysis.

ii



Acknowledgements

I would like to thank my research advisor, Professor Deborah Silver, for her guidance

and support. I would also like to thank Professor Herbert Freeman and Professor Todd

Cook for their participation on my commitee. I would also like to extend a special

thanks to the researchers and staff at the VIZLAB and CAIP for their assistance. This

work was supported by the NASA Ames Research Center (NAG2-829).

iii



Table of Contents

Abstract ........................................ ii

Acknowledgements ................................. m

List of Figures .................................... vi

Acknowledgements ................................. 1

List of Figures ....................................

1. Basic Overview .................................. 1

2. Datasets ...................................... 4

3. Scientific Visualization ............................. 7

4. Object Segmentation .............................. 10

4.1. Segmentation ................................. 11

4.2. Object Segmentation and Feature Extraction ............... 12

4.3. Object Segmentation of Curvilinear Grids ................. 17

5. Related Efforts on Unstructured Grids .................. 23

6. Unstructured Grids and Data Structures ................. 27

6.1. Object Segmentation of Unstructured Grids ................ 27

6.2. Data Structures for Object Segmentation .. ................ 29

6.2.1. Mathematical Basis ......................... 29

6.3. Representation ................................ 30

6.3.1. The Data-List ............................ 30

6.3.2. The Position-List ........................... 30

iv



6.3.3. The Cell-List ............................. 33

6.3.4. The Object-List ............................ 33

7. Algorithm and Implementation ....................... 34

7.1. The Input Phase .............................. 34

7.2. The Preprocessing Phase .......................... 35

7.3. The Segmentation Phase .......................... 35

7.4. The Merging Phase ............................. 37

7.5. The Postprocessing Phase ......................... 37

8. Examples ..................................... 40

9. Conclusion .................................... 49

Appendix A. Dataset Details ........................... 50

A.1. Object segmentation of a Curvilinear dataset(Figure. 4.3) ........ 50

A.2. Object Segmentation of a Regular dataset(Figure. 4.1) .......... 50

References ....................................... 51

V



List of Figures

2.1. Mesh Types .................................. 6

4.1. Object Segmentation of a Regular dataset ................. 18

4.2. Illustration of Periodicity .......................... 20

4.3. A curvilinear tokamak dataset (dimensions 32 X 129 X 65). The top

figure is the isosurfaced dataset. The second is an object segmented

figure without taking into account periodicity. Periodicity has been taken

handled in the third image .......................... 21

4.4. To illustrate periodicity, the same object has been isolated from the

object segmented figures (periodicity has not been handled in the upper

object, while periodicity has been considered in the lower object .... 22

6.1. An Unstructured Grid .......... .. ................. 28

6.2. Elements in the data structure used .................... 31

6.3. The Object/Region list ........................... 32

7.1. Sample Illustration of the Preprocessing Phase .............. 35

7.2. Cases to be considered when generating the bounding surface ...... 39

8.1. Segmentation of the atm dataset ...................... 41

8.2. Segmentation of the atm dataset ...................... 42

8.3. Segmentation of the atm dataset ...................... 43

8.4. Segmentation of the wing dataset on density values ............ 44

8.5. Segmentation of the wing dataset on density values ............ 45

8.6. Segmentation of the wing dataset on roach number ............ 46

8.7. Segmentation of the wing dataset on roach number ............ 48

vi



Chapter 1

Basic Overview

Large scale experiments, numerical simulations and remote observations generate mas-

sive datasets which need to be transformed into pictures and other graphic representa-

tions to facilitate interpretation. This transformation to visual, "scientific visualization"

images enables the identification and quantification of regions of interest within massive

datasets. The techniques of scientific visualization are used to manipulate data in fields

ranging from weather forecasting to molecular biology.

Scientific Visualization techniques are generally applicable to datasets which rep-

resent continuum, i.e., values exist between sampled data points. All continua being

visualized are types of tensor fields which have siml_le transformation properties under

coordinate transformations.

The rank of a tensor field is used to classify the physical field which then determines

the visualization method which can be used. A scalar field is of rank zero and has a

magnitude (i.e. one data value). Common scalar fields include density, pressure, elec-

trostatic voltage, temperature and humidity. The magnitude varies with the location

in space. A vector field is of rank one and has a magnitude as well as a direction.

It is an n-tuple where n is the dimension of the space i.e. two in 2D, three in 3D

etc. Common vector fields include velocity, vorticity, acceleration and magnetic field

strength. A gradient vector field may be derived f_om a scalar field by differentiation

with respect to each co_Jrdinate dimension of the space. An nzn matrix is used to

represent a tensor field of rank two. An example of a second-order tensor is the stress

tensor (solid mechanics). Second-order tensors may be symmetric (e.g., stress, strain)

or asymmetric (e.g., vorticity of a flow). Higher order tensor fields also occur in fields

like solid and differential geometry.



The format of datasetscan also be broadly classified into two categories, namely

structured and unstructured datasets. Structu_d datasets contain data that has

been obtained by samphng uniformly witldn the volume of the experiment. Some of

the datasets axe available as cubic or rectilinear data. Others have curvihneax data, as

in the case of those of Computational Fluid Dynamics (CFD), which have non-hnear

transformations applied to them so as to fill the volume of the fluid or to wrap around

an object (e.g., aircraft wings). Connectivity between points is implicit and is defined

by their position; a more detailed explanation is given in Chapter 2.

Unstructured datasets contain data that has been sampled at irregular intervals.

Connectivity between the data points is provided by grouping adjacent points into

cells. Cells may be tetrahedra, hexahedxa, prisms, pyramids etc; and they may be hnear

(straight edges, planar faces) or higher order (e.g., cubic edges with 2 interior points

on each edge). Tetrahedral cells axe particularly useful as they allow more accurate

boundary fitting, can be built automatically, and are simple to work with. Unstructured

grids axe common in Finite-Element Analysis (FEA), Finite-Volume Analysis (FVA)

and CFD experiments.

An important part of scientific visualization is to quantify and extract objects or

structures of interest. This is common to almost all disciphnes, as the crucial part

of understanding the original simulation, experiment or observation is the study of

the evolution of "objects" present. For example, studying the progression of a storm,

the motion and change of the "ozone hole" etc. Once regions of interest have been

extracted, their evolution can be tracked. Extracting regions is similar to the concept

of segmentation in computer vision. Most of the previous work in "object segmentation"

has been confined to 2D and 3D "regular" datasets.

In this thesis, we will explore basic algorithms to extract coherent amorphous regions

from 3D scala: unstructured datasets. A combination of techniques from computer

vision, image processing, computer graphics and computational geometry are used.

Techniques for the parallehzation of these routines are also investigated. This thesis

will provide a set of tools to extract regions of interest within unstructured datasets

organized as tetrahedral cells. The dataset will be transformed into distinct objects



whichcanbe trackedoverseveraldatasetsin the time domain.Eachobjectrepresents

a groupof tetrahedrathat meet certain thresholdcriteria. In the degeneratecase,

structureddatasetscanalsobehandled.Theseroutinescanbegeneral,to includeall

typesof unstructureddatasets.

The validity of the algorithmsareverifiedusingstandardstructuredgridsascom-

parisonsshowingthat theresultsmatchthosegeneratedby thestandardobjectsegmen-

tation tools.Varioustest caseswill beusedto measurethe complexityof the algorithm

andtechniquesto improvethe performancewill be suggestedin the final chapter.

The practicalapplicationsof this thesisarein weatherforecasting,fluid dynamics

andmathematicalsimulations.Resultswill beprovidedfor all thesecasesto emphasize

the generalityand extensibilityof the algorithm.

The thesisis organizedas follows. In Chapter2, we coverthe basisof dataset

formats. ScientificVisualizationtechniquesarepresentedin Chapter3. 3D Segmen-

tation techniquesfor continuousdata aredescribedin Chapter4. Chapter5 discusses

previouswork doneon unstructuredgrids. Unstructuredgrid segmentationand the

datastructureusedfor it arepresentedin Chapter6. In Chapter7, the algorithmand

implementationarepresented.Examplesand figuresarediscussedin Chapter8. In

Chapter9, wepresentourconclusionandsuggestionsfor future work.
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Chapter 2

Datasets

Simulations of different scientific phenomena in various disciphnes results in 2D and

3D datasets which need to be comprehended and interpreted. Algorithms and methods

are devised to transform these large datasets into pictures and other graphic represen-

tations that facilitate perusal, interpretation and understanding. For any experiment

or simulation, three domains need to be considered:

• the physical domain, P, where the equations defining the physical phenomenon

under study are used to compute the value of the defining variables on a discretized

grid;

• the computational domain, C, which is often .a uniform coordinate system. The

equations of the physical process in hand are transformed to this domain for the

purpose of numerical computation;

• the graphical domain , G, where in order to visualize the physical domain, the

physical coordinates need to be transformed into appropriate pixel coordinates

and pixel values.

Grids need to be generated during the transition between the physical and the

computational domain. In [24], meshes are classified into the following types (Fig. 2.1):

1. Cartesian (P(i, j, k) _ C(i, j, k)) : All cells in this grid type are identical axis

aligned cubes ("voxels"). The physical coordinate system is mapped directly to

the computational coordinate system.

2. Regular (P(i,j,k) _ C(i * dz,j * dy, k • dz)) : Regular grids are composed of

identical rectangular axis aligned prisms.



3. Rectilinear (P(i, j, k) _ C(z[i], y[j], z[k])) : Rectilinear grids consist of axis

aligned prisms. The distance between the poi_tts along an axis may not be equal,

which results in dissimilar sized cells.

4. Curvillnear (P(i,j,k) _ C(_r[i,j,k],v[i,j,k],z[i,j,k])): In this type, grids

are non-axis aligned. The computational space contain rectilinear grids which are

transformed in physical space to fill a volume or wrap around regions of interest

(e.g. aircraft wings in CFD applications).

5. Block Structured (P(i,j,k) :=_ C(:rb[i,j,k],yb[i,j,k],zb[i,j,k])): This type

consists of several structured grids (blocks) fitted together to fill the volume of

interest. This type is useful as although structured grids are easy to use, they

handle a limited range of topologies.

6. Unstructured (P(i,j,k) ::_ C(x[il,y[i],z[i])): Unlike the previous types, there

is no connectivity implied by this list of points. Edge/face/cell connectivity must

be supplied separately. Cells may be tetrahedral, hexahedral, prisms, pyramids

etc. and they may be linear (straight edges,, planar faces) or higher order (e.g.

cubic edges with two interior points on each edge).

7. Hybrid : This type consists of both structured and unstructured grids, putting

each where their fitting and computational strengths are most beneficial.

A representation of all these grids is shown in _igure 2.1. The grid (i.e the com-

putational domain) represents a sampled, much smaller version of the real world. The

transition between the physical domain and the computational domain must be done

correctly so as to account for what has not been modeled in the computational domain.

Therefore, boundary conditions and initial conditions are specified to handle the spatial

approximation of the rest of the world.



Rectilinear Gild

Curvilinellr Grid

Unstructured Grid

Hybrid Grid

Figure 2.1: Mesh Types



Chapter 3

Scientific Visualization

Scientific Visualization is the application of computer graphics techniques to visu-

alize scientific datasets. Scientific visualization methods have been extended to other

fields like database visualization, computational geometry, information visualization

etc. Simulations of different scientific phenomena in various disciplines result in 2D

and 3D datasets which need to be comprehended' and interpreted. Algorithms and

methods are devised to transform these large datasets into pictures and other graphic

representations that facilitate perusal, interpretation and understanding. This is the

goal of scientific visualization.

Techniques for visualization of 3D scalar datasets may be broadly classified into two

categories[3]: direct volume rendering and surface fitting algorithms.

Surface fitting algorithms are also called isosurfacing. An isosurface may be de-

fined as a surface of constant threshold comprising of all those points Pi = (xi, Yi, zi)

where the data value(pi) - k = 0 for some particular threshold value k. In surface

fitting algorithms, a threshold is initially selected.. Ceils which have aU corner values

either above the threshold or below the threshold are eliminated. Primitives such as

polygons or patches are then fitted onto the detected surface (constant-valued contour

surface) and rendered. Common surface fitting algorithms include marching cubes [13],

dividing cubes [2], marching tetrahedra [21] etc.

The marching cubes algorithm, a very popular isosurfacing technique [13], processes

the volume cell by cell. Each cell is classified by comparing the eight values at the cell

vertices with the specified threshold value. Cells which do not have the surface passing

through them i.e. the values are not both above and below the threshold value are not

considered. This classification results in a binary encoding which provides an index



into a precalculatedtable with the list of edges the surface passes through. Using the

values at each edge vertex, the surface edge intersections axe calculated using linear

interpolation. The generated polygons are then rendered using standard tools.

The marching cubes method sometimes creates ambiguous conditions [16] by con-

necting the wrong set of points while generating triangles. One method of reducing

these ambiguous conditions is to use the marching tetrahedra algorithm [21]. Here,

each cell of the volume is divided into 5, 6 or 24 tetrahedra. The tetrahedra are then

classified according to their projected profile with respect to a view point. Table edge

intersection tests are done with the tetrahedra. As a tetrahedron has 6 edges, one or

two triangles are sufficient to show the isosurface within it. The triangles axe then

rendered.

The dividing cubes [2] algorithm also processes the volume cell by cell, but without

generating any intermediate surface primitives. When a cell is encountered with corner

values both above and below the threshold value, it is projected to the screen space to

find out if it projects into an area larger than a pixel. I_fit does not, the cell is rendered

as a "surface point". Else, it is divided into subcells whose data values are calculated

by interpolating the dividing cube's vertex values. The surface point for the subcells is

considered to be at the center. The subcells are then rendered as a surface point onto

the image plane where the computed intensity is assigned to the appropriate pixel.

Direct volume rendering algorithms include V-buffer [26], splatting [28], ray-

tracing [11] etc. where in order to obtain the chara.cteristics from the interior of a 3D

dataset, volumetric primitives are used. Volumetric techniques can present a complete

view of a 3D dataset without reducing its dimensionality. In these methods, the inter-

mediate surface model is omitted, i.e. the elements can be directly mapped into screen

space. The color and opacity of structures close to the view point axe accumulated

while those of structures further away are modulated. All the scene voxels contribute

to the final image by means of color and opacity composition.

The V-buffer [26] is a cell-based method where all the pixels onto which a cell projects

are processed before moving to the next cell. The cell axe processed in a front-to-back

order with respect to the view point. In each plane, the cells axe processed beginning



from the closest one extending to those adjoining this cell based on their distance from

the view point resulting in a concentric sweep about the initial cell. A bounding box

for each cell is determined which is then clipped to each scan line to determine the

pixels the cell projects on. The values at the four corners of the pixel are integrated

from front to back and then averaged to calculate the current pixel color and opacity.

Once the processing is completed, the next predetermined cell is handled.

Ray Tracing is a method where imaginary rays are sent from the view point through

the pixels in the view plane, into the data volume. At each pixel, the ray is tracked

through the volume computing the accumulated opacity and color. The ray is traced

in the data volume until either the accumulated opacity reaches unity or the volume is

exhausted. There are many different approaches to the ray tracing algorithm as given

in [19, 26, 12]. Several methods also deal with acceleration techniques for the ray tracer.

Another technique for direct volume rendering is the splatting method [28]. The

data volume is traversed in the front-to-back order. Each voxel is transformed into

screen space and it's contribution to the image is calculated and composited based on

lookup tables. The basic idea is that the energy of each voxel is spread around and

therefore multiple pixels are affected by it. A reconstruction kernel is used to find the

extent of the pixels. The projection of the kernel onto the image buffer is called a

footprint. The image is completed when all the voxels have been "splatted" on the

image buffer.
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Chapter 4

Object Segmentation

Most of the available standard visualization tools provide techniques to render datasets

but do not provide a mechanism to quantify the numerous coherent regions of interest

within the dataset. A coherent region is a term given to a structure that persists for a

significant amount of time, i.e. can be seen in datasets over a time series.

The topologies of coherent features are similar across various scientific domains. For

weather data, this could include cloud patterns, storm and weather fronts across the

globe etc. In fluid dynamics, coherent features include migration of enhancements and

depletions of density (e.g bubbles or holes); finger like breakup or roUup of surfaces;

stretching, entanglement and reconnection of vorticity or magnetic field lines (e.g. vor-

tex structures associated with maxima events in Navier Stokes turbulence simulations).

In order to understand the results of an experiment, the intrinsic features of the

data are looked for and extracted. These are then mapped into appropriate geometric

models and displayed. This involves:

• Preprocessing the data

• Segmentation and feature extraction

• Surface generation and display

It may be necessary to filter or preprocess the data to reduce noise or subsample it

to reduce the size of the dataset.

Many basic algorithms have been developed earlier [23] for feature identification

and extraction. These algorithms help not only in visualizing and understanding large

scientific datasets but also help in reducing visual clutter. Features or objects observed
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in the datasetmay be trackedin time providing insights into the evolvingdynamics

of the field. As quantificationis also an essential .step to understand the underlying

physics_ the volume, surface area etc. of objects may be measured which can then

be used for comparison with objects from different datasets. We call these methods

"object segmentation" and they are described below.

4.1 Segmentation

The concept of segmentation is typical in computer vision and 2D image processing. In

computer vision, the goal of segmentation is to partition the entire image into quasi-

disjoint regions; a region may correspond to a whole object or to a meaningful part of

one.

In primitive region growing techniques [1], only aggregates of properties of local

group of pixels are used to determine regions. A threshold value indicates whether a

pixel is part of an object or not. The concept of neighborhood is not included in this

definition. More sophisticated techniques incorporate the concept of connectivity; i.e.,

pixels are likely to be part of the same distinct region if they are connected and above

a threshold value. Connectivity may be defined in the following way:

1. zi in a region R is connected to zj, iff there is a sequence of points, {z_, .., xj}

such that zk and zk+l are connected and all the nodes are in R.

2. R is a connected region if the set of points z E R has the property that every

pair of nodes is connected.

3. RinRj=¢,i_j

The entire image is given by f3_=1Rk where the set of regions, Rk, satisfying the last

two properties is known as a partition. Each region is generally a unique, homogenous

set defined as

H(Rk) = true for all k and

H (Ri _ Rj ) = false for i _ j.
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For a 2D uniformly sampled dataset, connectivity can be defined as 4-connected

(pixels along the axes ) or 8-connected( including" diagonals), etc. In the case of a

3D regular dataset, pixels become voxels including a connectivity in the z direction.

Objects could now be 6-connected (points along the axes), 18-connected(including the

diagonals along the axes), or 26-connected (including the long diagonals of neighboring

cubes).

Segmentation Techniques

Some of the segmentation techniques in computer vision include blob coloring and

region growing.

The blob coloring algorithm assigns each "blob" like region a different color. In this

2D technique, an L-shaped template is used to scan the image from left to right and

top to bottom, assigning a color to every non-zero node based on the color of the upper

and left neighbors. Each connected region is distinguished with a different color and

the total number of different connected regions is determined.

The region growing algorithm is a more complex algorithm in which there is a basic

assumption of an object-background image. A histogram of gray levels is used to select

the threshold level that divides the image pixels into either object or background. This

process can be done recursively for each region to further segment the image. Now,

H(R) = true if the points in R pass the histogram test, and

H( R) = false otherwise.

If the points in 1_ do not pass the histogram test, R should be split into subregions.

Similarly, some regions may need to be merged.

4.2 Object Segmentation and Feature Extraction

Standard isosurface algorithms provide bounding surfaces and edges but do not provide

any connectivity informatio;l or physical parameters such as volume, mass, centroid

etc. of the different distinct regions. These kind of. statistics are required for tracking



13

simulationsoverthe time domainandfor understandingthe underlyingmodel.

In [23],the abovemethodsof segmentationwereappliedto scientificvisualization

datasets.Featuresin a datasetmay bedefinedas isovalued clusters of points above a

certain specified threshold. Features in a dataset can be identified by initially selecting

points that meet the threshold criteria. This is done to segment the dataset for each

threshold value. A seed growing method can be used to isolate features in the dataset

[23, 15, 14, 25] with some modification similar to region growing. The maxima of the

dataset are used as initial seed points. Points around the maxima are then grouped

into regions based on neighboring information. As the threshold is reduced from the

maxima of the dataset to the specified threshold, regions around the seed points grow

and new seeds for further region growing arise. A tabulation of current active regions is

maintained for each iteration. However, merging of cUfferent objects must be considered

as there could be several seed points and a neighboring point could be a part of another

region. To facilitate efficient determination of adjacency and membership of neighboring

points as well as object intersection and merging, a spatial enumeration data structure

(an octree)was used [8,20].

The algorithm can be stated[22]as follows:
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1. Eliminate all points below thresh_min.

2. Create first object using the global maximum.

3. For every threshold-value, from thresh_min to thresh_max

do the following

3.1 For every existing object, do the following

3.1.1 For each point on the boundary of the object,

do the following

3.1.1.1 For each neighboring point (the neighbor is searched

at a distance of 1-grid point for a 6-point adjacency),

do the following

{

3.1.1.1.1 If the point is over the threshold and does

not belong to current object, add the point

to the current object

3.1.1.1.2 For all the remaining objects, do the following

{

If this point belongs to the object, merge the

current object with the object

}

3.1.1.1.3 Mark the point as boundary or non-boundary (if

all the six neighbors of the point are in the

object, the point is not a boundary)

3.1.1.1.4 Recursively repeat step 3.1.1.1 for the newly

added point

}

3.2 Look for new non-used regional maxima points (using

octree for efficiency)

3.3 Create a new object with the point as a seed and

repeat step 3.1
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. Use Marching Cubes algorithm to generate bounding

surfaces (only boundary nodes need to be considered)

(For more details see [8])

Once the objects have been identified, they need to be quantified. The following

parameters are computed for each of the distinct objects found:

• Volume" This is represented by the number of vertices in an object.

• Relationship between scalar and vector of a vertex:

S_ V/-2 -2 -_=

where S is the scalar value and V is the direction vector.

• Mass: (0th order moment)

in an object.

Mass is calculated as the sum of all the scalars

n

E = _--_ S_
i=O

where n is the total number of vertices with Si _> threshold.

• Centroid: (lst order moment)

1 _-_Si*zl
C, - E _=o

1 _ Si * Yi
Cu - Ei=o

1 _ Si * zi
Ca - E i=o

• Moment: (2nd order moment, or tensor matrix)

I,.4,1,,
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• Vector sum: The sum of all the vectors in an object is given by:

n

i=O

n

i=O

n

i=O .

• Unit of Vector-sum: Unit vector of vector sum:

Ivl =

9= = 9,11Vl

• Local maximum set: The local maxima set' is the set of vertices which are the

"local maxima" for each of the distinct objects

The bounding surfaces ar_ then calculated for each of the objects in a manner similar

to marching cubes.
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This type of segmentationhasbeenusedin CFD to searchfor the dominantvortex

structuresin isotropic3D turbulence.In Fig. 4.1,the object segmentationtechnique

is usedto extract vortex structuresin a turbulence dataset (see Appendix A).

4.3 Object Segmentation of Curvilinear Grids

A curvilinear grid is a 3-dimensional rectilinear grid in computational space which is

"warped" or subjected to non-linear transformations in physical space so as to wrap

around a region of interest. For a dataset with this type of a grid, the object segmen-

tation technique must include the periodicity of the dataset. If an object happens to

extend along a boundary, it would be split into two objects if periodicity is not enforced.

The object segmentation algorithm described in Section 4.2 remains the same with only

a change in the definition of the "neighboring" points. Points on the boundary of the

dataset also have neighbors. These neighboring points are on the opposite face of the

dataset. This means that the points on the opposite edge are treated as neighbors of

the edge points in all three directions i.e., x,y,z. This is illustrated in Fig. 4.2. After

the polygons have been generated as described in .step 4 of given in Section 4.2, the

polygons are remapped into physical space using a transformation matrix. The flow of

the algorithm would now be as shown below:

Process inputs

Feature isolation

Generate bounding surfaces

Transform triangles

I

Display

For a "tokamak" dataset (see Appendix A), the following transformations were used

to map a coordinate (x, y, z) to the physical space of the toroid (_:', y', z') :



Figure 4.I: Object SeglneIttadon of a Regtflar dataset
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z' = (tto + r cos 0) • cos

y' = (Ro + r cos 8) * sin _b

z' = rsinO

where

Ro = 600

ro = 300

r = (_ + 0.5)/(n_ - 1)• ro

and

In Fig.

0 = ((y/("y - t)) - 0.5) • 2_

= ((z/(,z - I)) - 0.5)• 2,_

nz = 32

ny = 129

nz = 65

4.3, the feature extraction technique for a tokamak dataset is shown.
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Figure 4.2: Illustration of Periodicity
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Figure 4.3: A curvilinear tokamak dataset (dimensions 32 X 129 X 65). The top figure
is the isosurfaced dataset. The second is an object segmented figure without taking

into account periodicity. Periodicity has been taken handled in the third image.
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Figure 4.4: To illustrate periodicity, the same object has been isolated from the ob-

ject segmented figures (periodicity has not been handled in the upper object: white

periodicity has been considered in the lower object
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Chapter 5

Related Efforts on Unstructured Grids

Unstructured grids are generally huge and complex datasets which are quite difficult to

render. These grids are common since in many scientific simulations, measurements are

made at discrete scattered locations. For example, temperature measurements taken

at various locations of a mine, mineral concentration measurements taken at various

depths at randomly located well sites etc. Fuxtherm.ore, the resultant data of the finite

element analysis (a method used frequently in the numerical solution of continuum

problems) consists of coarse, unstructured volume elements with floating point values

computed at the vertices.

The most obvious method to visualize an unstructured dataset is resampling; i.e.,

converting it into a rectilinear grid and using the standard visualization techniques

mentioned earlier. The sampling could involve low-order or complex interpolation

functions[5]. However, sampling causes a loss of data and accuracy. This is because

an unstructured grid consists of cells which differ in size. For example, in flows around

planes, as shown in Fig 2.1, cells located away from the surface of the object are thou-

sands of times larger than those located at the surface. Resampling with the resolution

of the larger cells would result in a great loss of precision, whereas resampling with the

resolution of the smaller cells would result in a grid too huge to handle.

In recent years, various techniques have been implemented to represent and visualize

data where the spatial x, y and z coordinates are not on a regular grid.

A technique called span filtering[7] has been used for displaying 3D isovalues of

scalar fields within a solid finite element model. In this method, an initial traversal of

the data elements with scalar values at their vertices yields a compact classification of

the model by data values and ranges. Such a compressed data structure is useful in
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providing a smaller list of elements which include a given isovalue. The initial traversal

of data elements consists of the following steps. The range of data values is first divided

into sub-ranges or "buckets". Elements are then grouped by the value of their lower

bound bucket (i.e. the lower bound of their vertex values) and their span length (i.e.

number of buckets spanned by the range of the values of the vertices). The groups

are then grouped again by their lower bound bucket within a larger group grouped by

the number of buckets this group spans. These classifications result in discrete ID lists

which could then be scanned easily to obtain regions of interest.

Another method of visualizing datasets generated by the finite element analysis

makes use of the fact that in finite element methods, the data is defined by the element's

interpolation function[10]. In this method, the finite elements are reconstructed as linear

tetrahedral elements (LTE) which have a simple interpolation function. LTEs are used

since in order to calculate the data value at any point in a finite element grid, cartesian

global coordinates have to be transformed into element local ones to locate the element

within which the point lies. This involves non-linear simultaneous equations. In LTEs,

the evaluation can be performed in global coordinates as the boundary surfaces are

planar. Iso-valued surfaces are then calculated by either extracting triangular elements

as iso-valued surfaces or by rendering the LTEs directly.

Unstructured grids can be volume rendered by using ray casting. However, this

method is not well supported in workstations because of the extensive number crunching

involved. The process can be accelerated by exploiting the coherency of the grid. In

the "Double Z Item" buffer scheme[27], a unique identification number is assigned to

each grid cell face. Two memory arrays of the same size are used. One memory array is

the usual Z buffer and the other memory array is an image buffer. This is used to store

id numbers of cell faces behind the ones that set the previous Z values on the previous

pass through the data. For each layer of cell faces encountered, the identification values

are decoded, data values are accessed and the shading contribution is composited into

a separate final image buffer.

In [29], a projection method is used to volume render unstructured grids based on

the Projected Tetrahedra algorithm given in [21]. As in any projection algorithm, the
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cellsof the dataset need to be ordered along the view direction. Visibility ordering of

cells in a rectilinear grid is straightforward. However, it is not trivial for unstructured

grids. The MPVO or Meshed Polyhedra Visibility Ordering algorithm[30] is a method

for visibility ordering of cells of any acyclic convex set of meshed convex polyhedra.

Here, an adjacency graph for the cells in the grid is constructed. For a specific view

point, the visibility ordering is constructed by assigning a direction to each edge in

the graph and then performing a topological sort on the graph. In order to handle

non-convex grids, either modifications to the MPVO algorithm have been used or the

grids have been preprocessed into convex grids. The tetrahedra in the dataset are then

projected onto the view plane. Depending upon the view point and the orientation of

the tetrahedra, 4 different projections are possible. Each projected tetrahedra is then

decomposed into one to four triangles which are rendered. To speed up the original

Projected 7"etrahedra algorithm, methods have been provided[29] to approximate the

opacity and color at the vertices of the projected tetrahedra.

A hybrid method of visualizing unstructured grids which are sparse (i.e. the mesh

may consist of several smaller submeshes with large empty areas between them) is

described in [9]. This kind of data is generally fdund in geological applications like

reservoir simulations. A plane is considered perpendicular to a line in the image, in-

crementally. A "scan-plane buffer" is filled with temporary information about all the

dements sliced by the plane. Each slice is broken into triangles and then into a set of

line segments by linear interpolation. The visual parameters and a pointer pointing to

the next expected segment are stored in the foremost scan-plane buffer location. All

the segments are chained together by run length code. Before drawing the scan line,

the final pixel value is determined by traversing the chain of segments in the scan-plane

buffer, thus eliminating extensive neighbor searching operations.

In order to visualize spherical data, a representation called the "Sphere Quadtree"

is described in [4]. Spherical data, generally obtained from earth and space sciences,

has an inherent spherical distribution. Therefore, mapping of this kind of data onto a

flat file system would introduce undesirable artifacts like "tears". The sphere quadtree

helps in eliminating introduction of "tears" and also helps in representing the adjacency
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relationship between the data components. It also helps in focussing quickly at the

regions of interest in the data. The entire region (i.e. a sphere) is described as a

collection of piecewise simple regions, namely the sphere is modelled with a convex

polyhedron (an icosahedron whose sides comprise of 20 equilateral triangles) so that

each face of the polyhedron is projected onto the surface of the sphere. The faces of the

icosahedron are successively subdivided to approximate the sphere. There are further

subdivisions depending upon tests administered to check how well the linear surface

matches the data surface. As there is a natural correspondence between the nodes of

the sphere quadtree and the trixel (area within a spherical triangle used to tile the

sphere), adjacent and neighboring regions are easily determined.

For efficient visualization, datasets with vector data need different techniques suit-

able for particular applications. Vector visualization techniques may be classified based

on two formulations namely the Eulerian formulation (where physical quantities are

measured at discrete positions, e.g. at the nodes of the grid) and the Lagrangian for-

mulation (where moving particles in the field are examined). Particle tracing can be

directly on unstructured grids[6]. Here, numerical integration which is done to find

successive positions of the moving particles can be "done directly in the computational

space of the individual cells of the grid.

All the above methods provide techniques to visualize unstructured grids. The

following chapters will describe a method to segment unstructured grids to obtain

regions of interest.
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Chapter

Grids and

6

Data Structures

6.1 Object Segmentation of Unstructured Grids

As mentioned earlier, various techniques have been implemented to visualize unstruc-

tured datasets. In this thesis, the principles of object segmentation have been extended

to unstructured datasets. Unstructured volumes have no implicit connectivity. The

cells of the grid could be hexahedra, tetrahedra, pyramids, prisms etc. However, a

volume of tetrahedral elements is popular as data in a tetrahedral cell is linearly dis-

tributed and every face of the cell is planar. The object segmentation technique has

been used here on unstructured scalar volumes with tetrahedral cells. The tetrahedral

model has three components:

• A nodal data component which gives the scalar value for each node

• A nodal position component which gives the x, y, z positions of each of the nodes

• A cell topology component which contains the identifiers of the four nodal data

components

To extract features in the dataset, values that meet the threshold criteria are first

selected. A seed growing technique is then used to locate the features in the dataset, i.e.

regions are grown azound seeds which are initially.the extrema values in the dataset.

The position of the neighboring values is not implicit as in the case of a regular dataset.

For a given point, its neighboring points are the other three vertices of the tetrahedxon

it is part of. Therefore, it is necessary to keep track of all the tetrahedra this point is

part of.
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For a given point, m :

m(x, y, z) --> represents the position component of m

S(m) --> represents the data component of m

For triangles 1 and 4, the topology is described as follows:

T(1) = (i, j, m)

T(4) = (j, k, m) etc.

Figure 6.1: An Unstructure_t Grid



29

To avoid scanning the dataset each time for information about connectivity, a list

of tetrahedra that have a given point in common is maintained as part of the data

structure. All the points associated with the tetrahedra that form the region are flagged

as "used". A new set of seed points is selected from the maxima of the remainder of the

points. This algorithm is executed on the dataset iteratively until there are no more

"active" points. At the end of each iteration, different regions or objects are merged

if needed as there could be several seed points and any given point could be part of

multiple regions. The final result of the algorithm is a set of distinct objects each

represented as a list of tetrahedra. A marching tetrahedra algorithm is then applied

directly to each object to obtain the bounding surfaces. These surfaces are represented

as triangular polygons which can be directly rendered by standard graphics toolkits.

Once the objects have been identified, they need to be quantified. Parameters like

Volume, Mass, Centroid etc. as described earlier are computed for each of the distinct

objects found.

6.2 Data Structures for Object Segmentation

This section describes a set of compact data structures to store cell topology (points

and their ordering) in an unstructured grid. In addition, the mathematical basis, rep-

resentation and implementation will also be discussed.

6.2.1 Mathematical Basis

The cell structure is based on the topological construct called a Cell Ci. A tetrahedral

cell Ci is an ordered sequence of points,

= {po,pl,p ,p3} (6.1)

with p E P where P is the set of all points within the dataset. In the case of tetrahedral

cells, the number of points defining a cell is four.

Two Cells C_ and Cj are adjacent to each other if at least one vertex in the two cells

is the same, i.e., p_ E C_ and p_ E Cj.
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Another set, U(pl) represents the set of tetrahedral cells which have the point pi as

one of the vertices.

Hence,

u(p )= {cj: ecj} (6.2)

A region R is defined as a connected region if the set of cells in R has the property

that every pair of cells are adjacent. Each region is referred to as an object.

6.3 Representation

Memory requirement and simplicity have been the key considerations for the design

of the data structures used to implement the segmentation algorithm. The dataset is

read into a structure that is composed of four lists. The elements in each list can be

addressed by an index into the respective arrays (Fig. 6.2) as described below.

6.3.1 The Data-List

This is an array of data values at each point of the dataset. Each point can have up to

three data values, which can be accessed by an offset into this list. The list consists of

nxm elements, where n is the number of points in the dataset and m is the number of

data values.

6.3.2 The Position-List

This is the list of all points in the dataset.

This list contains the x, y, z coordinates of the point, a set of flags and a pointer

to the Cell-List explained later. The flags are used for various purposes during the

segmentation process and have the following functibns:

• F_USED - When this flag is set, it indicates that the given point has been handled

• F_THR - When _his flag is set, it indicates that the given point is above the

threshold
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Figure 6.2: Elements in the data structure used
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• F_UCD - This flag is used when the bounding surfaces for each object are gener-

ated

The Cell Pointer points to the list of tetrahedra which have this point in common

which is the adjacency list. This list is generated by scanning the list of tetrahedral

cells for every point in the dataset. This adjacency list is created once at startup.

6.3.3 The Cell-List

This is a list of all the tetrahedral cells in the dataset. Each cell is represented by

pointers to the four vertices of the cell. Each pointer is an index into the Position-List

described above. This list is also generated only once at startup from the input data

file.

6.3.4 The Object-List

This is a list of objects that have been generated by the segmentation algorithm. The

elements of the structure are shown in Fig 6.3. The Cell pointer points to a linked list

of tetrahedral cells that comprise this object. This list can be used directly to calculate

the mass, volume and other physical parameters for the objects. For visualization, a

bounding surface can be generated and the list of triangles for the surface is pointed to

by the Polygon Pointer. F_ach triangle consists of the x, y, z coordinates for each of the

vertices.
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Chapter 7

Algorithm and Implementation

This chapter provides the details of the algorithm to extract objects from unstructured

datasets.

The intuitive overview of the segmentation algorithm is as follows. Initially, the

adjacency list for the tetrahedral cells in the mesh is constructed. A seed point is

then selected and all the ceils having the seed as a vertex are determined and grouped

together. For each vertex in this set, the adjacency list is scanned and cells are added

to the Object-List, until no more points can be found. A bounding surface for each

object is constructed using the marching tetrahedra algorithm.

The algorithm is divided into the following phases :

* The Input Phase

• The Preprocessing Phase

• The Segmentation Phase

• The Merging Phase

• The Post Processing Phase

7.1 The Input Phase

This is the setup phase for the algorithm. The dataset is scanned in and the Posit;on-

List, Cell-List and Data-List are populated.
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Position List Adjacency List

:_ {el}

:_ { ¢1, c2 }

:" {cl,c2c3 }

> { c2, c3 }

:_ {c3 }

{c4}

_- {c4}

_" {c4}

Figure 7.1: Sample Illustration of the Preprocessing Phase

7.2 The Preprocessing Phase

This is the first phase of the segmentation algorithna. The adjacency list is generated

for the tetrahedra in the mesh.

All the points in the dataset are scanned and points above the threshold have their

flag set to F-THR. All points below the threshold are thus eliminated. The threshold

value is user determined and is dependent on the noise value.

For each data point P(i)

If Data value D(i) _> Threshold, then mark point

with the F-THRESHOLD flag.

For each point in P(i) over threshold

For each Cell C(i) in the list C

If Cell C(i) has P(i) as a vertex, add Cell C(i) to

the adjacency list of F(i).

A sample illustrationis shown in Fig. 7.1.

7.3 The Segmentation Phase

This phase will scan the adjacency listgenerated from the previous phase of the algo-

rithm and generate a listof objects. The algorithm isdescribed below.
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While there are no points marked USED

Determine Set of Points M(i) with highest data

value and not marked USED.

For each point in M(i) perform the following

{

Add an Entry 0(i) to the 0bject-List

Add all the Cells in the adjacency list of M(i) to 0(i)

}

For each Object 0(i) in the Object-List

For each Cell in the 0bject-List

{

Determine the vertices from the Cell-List

Determine the Cells connected' to this vertex from the

adjacency List of the Position-List.

Add all these Cells to the 0bject-List for this Object 0(i)

Merge Objects using the Next phase of the alEorithm

}

An example is shown below (refer to Fig. 7.1).

Let point 4 have the ma_mum data value.

Pass 1:

Objectl --_ c2, c3

Pass 2:

Objeetl ----, e2, c3, cl

Pass 3:

Get Next Maximum Value , point 8.
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Object2 _ c4

The Object-List now has 2 objects:

Objectl _ c2, c3, cl

Object2 _ c4

The example thus has 2 objects with the cells as marked to the right of the arrow.

7.4 The Merging Phase

This phase of the algorithm merges objects that have cells in common. Consider two

objects comprising of the following cells:

Objectl ----* cl, c2, c3

Object2 _ c3, c7, c8

Since Objectl and Object2 have cell "3" in common, the merged object would be:

Object1 _ cl, c2, c3, c7, c8

The merge algorithm is executed whenever a new object is added to the Object-List.

Let On be the object being created and Cn be the list of cells comprising this object.

For every Cell in C. do

If C(OBJ-NUM) = k, then

Add the Cell-List C. to 04

Rexecute the algorithm with Ok and CA

Set OBJ-NUM for all Cells = k

7.5 The Postprocessing Phase

This phase of the algorithm generates the bounding surfaces for the Object-List.

A surface is defined as a set of points p_ = (_, y_, j_) such that f(p_) = 0 for some

function f. The bounding isosurface represents the boundary between the points above

and below the user specified threshold value. A surface passes through a tetrahed_al

cell if and only if an intersection exists on an edge connecting oppositely signed cell

vertices and no intersection exists otherwise. This implies that all tetrahedral cells
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which do not have at least one point above threshold and one below can be eliminated

from the isosurface calculations. A marching tetrahedra algorithm will generate three

or four sided polygons which could then be rendered by some standard visualization

package.

The algorithm is as follows:

For every cell in every object do

{

Determine edges affected [17] from Fig. 7.2

Interpolate and determine points on the surface

Generate the polygons from the points

}
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Figure 7.2: Cases to be considered when generating the bounding surface
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Chapter 8

Examples

The segmentation technique was applied to two unstructured datasets.

The first dataset was provided by Lloyd Treinish. This dataset is the global at-

mospheric temperature described on a tetrahedral mesh. It has 311,040 tetrahedral

elements and 74,095 points.

The second dataset was taken from the NASA web site provided by T. J. Barth and

S. W. Linton. It has 595,536 tetrahedra and 112,551 points. This dataset consists of

data for a multiple component wing computation of inviscid compressible flow (Mach

= .2 and alpha = 0 deg).

The following figures describe some of the experimental results.
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Figure 8.h Segmentation of the atm dataset

Threshold(Z of Max) = 80Z

Time for processing inputs = 11.3 sec

Time for segmenting = 15.6 sec

Memory requirement = 17.9 MB
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Figure 8.2: Segmentation of the atm dataset

Threshold(_ of Max) = 92Z

Time for processing inputs = 4.6 sec

Time for segmenting = 4.1 sec

Memory requirement = 8 MB
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Figure 8.3: Segmentation of the atm dataset

Threshold(_ of Max) = 99_

Time for processing inputs = 3.7 sec

Time for segmenting = 8.4 sec

Memory requirement = 9.9 MB
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Figure 8.4: Segmentation of the wing dataset on density values

Threshold(_ of Max) = 93_

Time for processing inputs = 10.2 sec

Time for segmenting = 40.2 sec

Memory requirement = 20 MB



Figure 8.5: Segmentation ofthe wing dataset on density vMues

Threshold(_ of Max) = 92Z

Time for processing inputs = 5.68 sec

Time for segmenting = 36.05 sec

Memory requirement = 19.8 MB
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Figure 8.6: Segmentation of the wing dataset on math number

Threshold(_ of Max) = 40_

Time for processing inputs = 11.5 sec

Time for segmenting = 14.9 sec

Memory requirement = 28.8 MB
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Figare 8.7: Segmentation of the first wing dataset on mach number

Threshold(_ of Max) = 42_

Time for processing inputs = 9 sec

Time for segmenting = 12.2 sec

Memory requirement = 26.8 MB
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Figure 8.8: Segmentation of the second wing dataset on pressure

Threshold(_ of Max) = i0_

Time for processing inputs = 2.2 sec

Time for segmenting = 12.1 sec

Memory requirement = 6.5 MB
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Chapter 9

Conclusion

In this thesis, we have implemented a segmentation algorithm for curvilinear and un-

structured grids. Segmentation helps in focussing on coherent structures in the datasets.

As mentioned earlier, the structures or "objects" thus obtained may be tracked in the

time domain highlighting the topological relationship between evolving interacting vari-

ables. Data surgical operations may be performed on the extracted objects.

The work done in this thesis is preliminary. The algorithm should be paraUelized

to make it more efficient for large datasets. Tracking should also be incorporated. The

concept of separation of objects should also be brought in. This is because, sometimes,

it may be essential to consider one large connected object as several smaller objects. A

lower resolution of the simulation might have rendered the object as being connected

and such a large object may be difficult to comprehend when visualized.
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Appendix A

Dataset Details

A.1 Object segmentation of a Curvilinear dataset(Figure. 4.3)

The dataset represents a 3D toroidal gyrokinetic particle simulation provided by Scott

Parker of the Princeton Plasma Physics Laboratory, Princeton University.

"Tokamaks" are structures in magnetic fusion energy experiments(J18]). An impor-

tant part of these experiments is the understanding of the turbulent transport phe-

nomenon which causes particles and energy to escape confining magnetic fields. This

results in fusion output power comparable to the input power needed to maintain the

tokamak plasma at very high temperatures( 10keV ). As practical experiments are diffi-

cult with the high temperatures involved, numerical simulations are very important for

understanding the core plasma transport. The gyrokinetic equations are a reduced set

of equations derived from the Vlasov-Maxwell equations for describing tokamak plas-

mas. The simulation results in large complex data consisting of 3D arrays evolving in

time.

A.2 Object Segmentation of a Regular dataset(Figure. 4.1)

The dataset was produced by Dr. Shiyi Chen at the Los Alamos National Laboratory

and has a spatial resolution of 2563 grid points in a uniform mesh. The object seg-

mentation technique was paraUelized and run on a massive parallel computer( the CM5

with 512 processors ) at the National Center for Supercomputing Applications(NCSA)

and the SGI Onyx at Rutgers. A threshold value of 20_ of the maximum was used to

detect the objects observed.
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